Comment rendre la data intelligible ?
Les objets connectés génèrent deux types de données : les données de connexion et les données raw ou brutes.
Les données de connexion permettent de récolter des informations sur des éléments intrinsèques à la connexion comme la quantification du volume de données échangées, la durée de connexion ainsi que le réseau et l’opérateur utilisés.
Les données « raw data », c’est-à-dire des données brutes collectées par l’objet ont pour vocation d’être analysées.
A ce stade, la data n’est pas lisible dans son état brut : elle doit donc être traitée pour être exploitable et acquérir de la valeur. Pour cela, il faut, dans un premier temps, réaliser un audit pour connaître les besoins métier de l’utilisateur final. Ensuite, selon son niveau d’attente et de compréhension, le traitement des données s’effectue via une restitution automatique ou via la création de modèles statistiques. Les interfaces qui lient l’algorithme à l’utilisateur sont alors personnalisées selon les besoins.
Pourquoi l’exploitation de la data est-elle si importante ?
Analyser la data permet de s’appuyer sur des données statistiques fiables pour mettre en place un certain nombre d’actions décisionnelles. Par exemple, cela permet d’être alerté en temps réel en cas de dysfonctionnement, et donc de faciliter la maintenance et le monitoring d’équipements connectés.
Par ailleurs, l’historique des données récoltées sert également à définir des algorithmes prédictifs. Plus la data est volumineuse et précise, plus les modèles créés sont fiables, on parle par exemple de plusieurs milliards de données collectées par heure. Cela permet, à terme, de façonner une véritable aide à la décision qui peut intervenir sur des questions de projection de croissance, d’investissement ou de rentabilité.
Si ces modèles algorithmiques sont encore binaires aujourd’hui, ils gagnent progressivement en autonomie : en effet, plus on collecte de data, plus les systèmes prédictifs sont précis et s’améliorent, plus l’aide à la décision est facilitée.
La data constitue le socle de toute analyse. Elle permet, à court terme, de mener des actions de maintenance et de monitoring pour optimiser les coûts et la logistique au quotidien.
À long terme, la fiabilité des données collectées est primordiale pour la construction de modèles prédictifs exploitables : elle constitue un véritable atout pour prendre des décisions plus éclairées, et construire une stratégie plus efficace.
(1) Source : https://www.lebigdata.fr/infographie-quatre-v-big-data-expliques-ibm
27 pages de conseils concrets
Pour tout comprendre sur la carte SIM M2M
Télécharger le guide gratuitementNewsletter IoT
Recevez des pépites IoT croustillantes directement dans votre boîte mail
Je souhaite rejoindre la communauté Matooma et recevoir des pépites IoT croustillantes dans ma boîte mail. Vous pouvez vous désabonner à tout moment, pour en savoir plus, consultez notre Politique de confidentialité
Sujets populaires